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AJIstract-A recendy-developed variational formulation is applied to the study of plane waves in randomly
inhomogeneous media. Explicit results (involving definite integrals) are obtained for 10111 waves, propagat·
illl in an n·phase medium, without limitation to isotropy of either phases or correlation functions. The
estimated overall moduli, and also perturbations to the dispersion relation, which give both dispersion and
attenuation of the mean wave, are sensitive to the choice of "comparison medium" which is used in the
formulation: it can be chosen, in particular, so that the predicted overall moduli coincide with the upper or
lower-bound estimates of Hashin and Shtrikman, or it can be chosen "self-consistently". Results for
particUlar cases are presented in a companion paper.

l. INTRODUCTION

This is the first of a short series of articles whose purpose is to explore the implications of a
recently-developed variational formulation (1] for waves in randomly inhomogeneous media.
Applications to composite media such as polycrystalline aggregates or fibre-reinforced materials
are envisaged, so that wavelengths of disturbances are expected to be larger than typical
microstructural dimensions. In fact, only the long-wavelength limit is considered explicitly, at
least at present, though the formulation that will be presented could cope with shorter waves.

For the class of problems under discussion, two other approaches are available, both of
which involve ensemble averaging some set of governing equations. One of these, pioneered by
Karal and Keller[2] and pursued more recently by McCoy[3], involves performing a pertur
bation analysis and then ensemble averaging. It is effective when the material properties
fluctuate by small amounts about their mean values. The other approach, which has been
applied to materials which comprise a matrix throughout which is distributed a population of
discrete scatterers, describes the total field as the sum of fields scattered from each in
homogeneity. The equations that result are then averaged, conditionally upon one or more
scatterers being fixed, to generate a hierarchy of equations, which is closed by making some
closure assumption. The closure assumption that is usually made is the quasicrystalline
approximation of Lax[4]. This route has been followed, employing explicit series represen
tations for the scattered fields, by Bose and Mal [5], Varadan et al. [6] and others. In this form, it
is not readily applicable to other types of composite such as polycrystals. Integral equations can
be generated, however, which have the potential to overcome this limitation. Mal and
Knopoff[7] provided such a formulation for a matrix containing spherical inclusions and
deduced from it estimates of overall moduli which are exact for a dilute suspension. More
recently, Willis [8, 9] formulated integral equations for "polarizations" (which are defined in
Section 2) and applied them to the study of waves in a matrix containing aligned spheroidal
inclusions, using Lax's quasicrystalline approximation. Devaney (10] employed quantum
mechanical formalism to obtain an equation for a "transition operator", which generates a
source term corresponding to the polarizations used by Willis, and again proposed to solve the
equation, using the quasicrystalline approximation, for a matrix containing inclusions. Devaney,
however, generated his equation relative to a general "comparison material" which he proposed
to estimate self-consistently by choosing it to have the properties that his scheme predicted for
the overall response of the composite. Essentially the same scheme was developed in
dependently for the scattering of electromagnetic waves by Tsang and Kong(1t].

The present approach is rather different in character, in that it does not employ a hierarchy
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of averaged equations. Instead, the starting point is the stochastic stationary principle intro
duced in [1], which relates to configuration-dependent trial polarization fields. It generates the
hierarchy exactly but an "optimal" approximate formulation is obtained by seeking a stationary
point for the variational operator, over a suitably restricted subspace of configuration-depen
dent fields. The equations that result are similar to those that were obtained in[8-10]. The
formulation allows for a composite with any number of constituents (which need not be
isotropic) and arbitrary two-point correlations, and it employs a general comparison medium; it
is thus, in one respect or another, more general than those given in [8-tO].

The main results of this work are explicit formulae for the effective response of the
composite to low-frequency disturbances, and for lowest-order real and imaginary corrections
to the low-frequency dispersion relation. Both dispersion and attenuation are thus predicted.
The influence of the two-point correlations appears through simple integrals, even for a
generally anisotropic composite: the attenuation term involves volume integrals of the two
point correlations while the dispersion term contains integrals over planes. Particular examples
will be discussed in Paper II.

This introduction is concluded with a remark on notation. Suffixes are suppressed
throughout so that quantities which, in component form would be written Ljjk1ekl, (Tijeij, (Tijnj,

with the summation convention in operation, are written simply as Le, (Te, (Tn: whether a
quantity is a tensor, a vector or a scalar should be clear from the context in which it appears.

2. FORMULATION

For an arbitrarily inhomogeneous elastic body occupying a domain n, the general problem
under consideration is to solve the equation of motion

div (1 +g =p, x En, t > 0, (2.1)

where (1, p and g represent respectively stress tensor, momentum density and body force. The
properties of the body appear through the constitutive relations

(T =Le, P =pli, (2.2)

where e denotes the strain tensor, u denotes particle displacement and L, p are, respectively,
the tensor of elastic moduli (assumed symmetric) and the mass density (assumed positive).
Relative to a "comparison body" with elastic moduli Lo and density Po, stress and momentum
polarizations 'T, 'IT are now defined through the equations

so that

(T =Loe + 'T, P =poll + 'IT

'T =(L - Lo)e, 'IT =(p - Po)li.

(2.3)

(2.4)

The polarizations 'T, 'IT are, of course, not known unless the displacement field u is known. It is,
nevertheless, possible to give a representation for u in terms of T, 'IT and the Green's function G
of the comparison body: as shown in [8],

where S, M represent integral operators whose kernels have components

S ( , ') - aGpi ( , ')1pijX,X,t-t - ~, x,x,t-t ,
aXj li./)

II (' ') _ aGpl ( , ')
l"Jpi X, X , t - t - at x, x , t - t .

(2.5)

(2.6)

(2.7)
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In (2.6), the bar followed by the suffix (i, j) is meant to imply symmetrization with respect to i
andj.

Boundary and initial conditions have not been mentioned explicitly but they are contained in
the representatibn (2.5) through the requirement of selecting the appropriate homogeneous
boundary conditions for G. Also, the field Uo is defined to be the solution of the given boundary
value problem, but f'Or the comparison body rather than the actual one. Operator equations for
the polarizations 'T, 'ffnow follow by combining eqns (2.4) with the representation (2.5) to give

where 5x, Mx are operators with kernels

(5) =azapilxP4IJ , ,axqax I (pq).(lJ)

(2.8)

(2.9)

(2.10)

(2.11)

St = as/at and Mt = aM/at, the singularities being interpreted in the sense of generalized
functions. Equations (2.8), (2.9) were derived in[8]; they were shown in[l] to be equivalent to
the stationary principle

where

X'(T, 'ff) =iJdx{(2eo- SxT- Mx'ff - (L- Lori.,.)• .,.
n

+(2Iio- StT- Mt'ff - (p - Porl'ff)*'ff},

(2.12)

(2.13)

the symbol • denoting the operation of time-convolution.
Throughout this paper, attention will be focussed upon media which are composed of n

distinct typesofmateriaJ, or phases, perfectly bonded together. For such media, if the rth
phase has moduli L, and density Pro the tensor of moduli L and the density P may be
represented in the forms

" "L =~ L,f,(x), P=~ p,f,(x), (2.14)

where the indicator function f,(x) takes the value 1 if x is in phase r and zero otherwise. Media
whose structure is random will be considered, in the sense that any particular specimen is
regarded as having a label a that belongs to a sample space fI over which a probability density
pea) is defined. The functions f,(x) then depend upon a and the probability P,(x) of finding
phase r at x is given by

nP,(x) = (f,(x» =f f,(x, a )p(a) da,
y

The probability P,.(x, x') of finding simultaneously phases r at x and s at x' is

P,,(x, x') =(j,(x)!.(x'».

(2.15)

(2.16)

Probabilities involving more points are defined similarly. The probability PJir(x', x) of finding
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phase s at x', conditional upon finding phase r at x is defined by the relation

P,,(x', x) =P,I,(x', x)P,(x). (2.17)

For such random media, a natural objective is to seek various expectation values of the
solution. For example, by averaging (2.5),

(u)= Uo- S(or)- M('IT)

and (or) can be represented in the form

n n
(or) = ~ (or),(x, t)Pr(x) = L (or(x, t)f,(x».

,=1 r~1

(2.18)

(2.19)

In (2.19), (or)r represents the expected value of or, conditional upon finding phase r at x.
Expectation values conditional upon finding specified phases at other points are defined
similarly; for example,

(With this notation, (or)r becomes a shorthand for (or)r (x, t; x). Cumbersome notation seems to
be unavoidable at this point; fortunately, it is not needed in the sequel).

A hierarchy of equations governing such conditional expectations of or, 'IT is obtained by
multiplying eqns (2.8), (2.9) by the appropriate factors fr/(Xj) and taking expectations. It was
demonstrated by Willis[l} that the entire hierarchy is implied by the "stochastic stationary
principle"

6(~(or, 'IT» = 0, (2.21)

where or, 'IT are now regarded as functions of x, t and a. The principle (2.21) provides a method
for the automatic generation of equations from which approximations to (u) may be found,
which make "optimal" use of limited statistical information. For example, substituting trial
fields of the form

n

or(x, t, a) = ~ 1",(x, t)f,(x, a),
r .. 1

n

'IT(x, t, a) = L 'IT,(x, t)fr(x, a)
,=1

ano seeking a stationary point for (~) with 1", 'IT so restricted leads to the equations

n

(L, - Lori or, +L [Sx(or.P.I,) +Mx('IT,P'I')] == eo,
,"1

n

(Pr - PorJ'lTr +L (S/(or,P"r) +M/('IT.P,I')] == Uo... \

(2.22)

(2.23)

(2.24)

(2.25)

for the functions orr(x, t), 'IT,(x, t). These equations were derived in[l]. They make optimal use
of the two-point probabilities P,. in the sense that substitution of trial fields or, 'IT with any
dependence upon the configuration more general than that given in (2.22), (2.23) would
inevitably generate equations containing probabilities involving more than two points. Equa
tions (2.24), (2.25) are closely related to some equations studied in[S], which were derived by
invoking the quasicrystalline approximation of Lax[4} to close the hierarchy. Their "optimal"
status was not recognised at the time but it was noted that, in the static limit, they were
derivable also from the variational principle of Hashin and Shtrikman[l2-14], to which (2.12)
reduces in the static limit.
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3. PLANE WAVEs

It is convenient, before proceeding further, to represent, in eqns (2.24), (2.25), eo and rio in
terms of (u), using (2.18). This gives the equations

"(Lr - LoflTr+~ [Sx(1'.(P.lr - P.» +Mx(7T.(P.\r - p.))] =(e),.-1
"(Pr - pofl

7Tr +~ [S/(T.(P.\r - P.»+ M/(7T.(P.lr - p.))J =(ri).
.=1

(3.1)

(3.2)

They are not independent of Uo, because (2.18) has also to be satisfied.
Equations (2.24), (2.25) or, equivalently, (3.1) and (3.2) with (2.18), provide an approximate

description of any boundary value problem for any randomly inhomogeneous medium. The
present object, however, is to gain some insight into their general character by studying
possible plane-wave solutions. For this, the body is taken as infinite and statistically uniform (so
that p.. p. lr are insensitive to translations) and boundary conditions are discarded by setting
Uo =O. The required plane-wave solutions take the form

Tr(X, t) =Tr exp[- i(kn.x +wt)],

7Tr(X, t) =7Tr exp[- i(kn.x +wt)]

(3.3)

(3.4)

where 1'" 7Tr on the right sides of eqns (3.3), (3.4) are constants. The circular frequency w and unit
vector n, which defines the normal to the plane wave, are taken as given and the wave-number k is
to be found. It follows now, from (2.18) with Uo = 0, that

where

(U) =- (51 +M7i') exp[ - i(kn.x +wt)],

" "
l' = ~ PrT" 7i' =~ Pr7Tr

r-I r=1

(3.5)

(3.6)

and 5, M are the Fourier transforms of the infinite-body operators S, M, evaluated at (kn, w).
Thus, they nave components

(3.7)

(3.8)

where

(3.9)

LO<n) being the acoustic tensor for the comparison material, with components

(3.10)

The factor e-i.It can be suppressed throughout if time-reduced versions of the operators on
the left sides of (3.1), (3.2) are employed. These follow simply (using eqns (2.6), (2.7), (2.10),
(2.11» from the time-reduced infinite-body Green's function G. for which Willis [8] derived the
expression
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where the unit vector UN (~) represents the polarization of a plane wave with unit normal ~,

propagating in the comparison material (that is, it is an eigenvector of LoW) and CN is the
corresponding wave speed. c5( ) is the Dirac delta-function and the integration extends over the
unit sphere I~I ::: I in ~-space.

When these substitutions are made, eqns (3.1), (3.2) reduce to a set of linear homogeneous,
algebraic equations for the set of constants T" 1T" r ::: I, 2, ... n, in which the wavenumber k plays
the role of an eigenvalue. Furthermore, translation-invariance allows the equations to be
generated at one point only, say x::: O.

4. PERTURBATION THEORY

The algebraic equations for Tr, 1Tr described above generally require numerical solution.
Progress can be made by analytic methods, however, in the low-frequency limit w ~O (or, more
strictly, walc 4€ I, where c is atypical wave speed CNW and a is a length scale characteristic of
Psir - p.). An advantage of the representation (3.11) presents itself in this limit, since it
decomposes G directly into the sum of the static G (obtained by setting w::: 0) and a
perturbation which is of order w. The lowest-order approximation is obtained by retaining only
terms of order zero in w in eqns (3.1), (3.2). The operators M" S" M, are all at least of order w,
while S" to order zero in w, reduces to the corresponding static operator f"', whose kernel has
components

(4.1)

Anticipating that k is of order wlc, the right sides (e), (Ii) of (3.1), (3.2) are kept exactly, since
the Fourier transforms S" M" S" Mr are homogeneous of degree zero in (k, w). To order zero
in w, then, eqns (3.1), (3.2) yield, when x ::: 0,

where now

and

n

P,(L, - LoflT, +L A,sT,::: P,(e},
,=1

P,(p, - Pof 11T, ::: - iwP,(u},

(u}::: - (Sf +Mir)

Ars ::: fdx'f"(x')(Psr(x', 0) - PsP,).

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

The extra factor P, is included in (4.2), (4.3) to give the symmetry A,.::: Asr ; this follows
because P,,(x', 0)::: P,.(O, x')::: Prs (- x', 0), by translation invariance, and f" is an even function
of x'. The integral that defines A,. converges because Psr - PsP, either tends to zero, or at least
has mean value zero, at large Ix'l, and f"(x')::: O(lx'I-3

). For general k, the integrand would also
contain a factor e -ikn.x· but this is dropped because of the assumption walc 4€ l.

Equations of the same form as (4.2H4.6) were discussed in [9], in the context of the study of
waves in a matrix containing a single set of aligned inclusions. As in[9], they can be solved
directly. A physically appealing alternative, however, is to note that eqns (4.2) define precisely
the polarizations T, that would be generated in the composite, if it were subjected to the
uniform static mean strain (e) and the polarizations wc:re estimated using the Hashin-Shtrikman
variational principle (which, as remarked earlier, is a limiting case of (2.12». An equation
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corresponding to (4.2) was first derived in this way in[15]. Suppose, formally, that eqns (4.2) are
solved to yield

Tr = Sr(e).

Then, as discussed in [15], the tensor of overall moduli L is estimated as

n

L=Lo+L P'sr
r-I

so that, from (2.3), (u) = L(e). In terms of L, now, eqns (4.2) imply

n

f =L P'sr(e) =(L - LoXe).
r-I

Equations (4.3) can be put in the similar form

'iT = (p - Po)(u),

if Pis defined as the mean density,

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Equations (4.9) and (4.10) show that the mean polarizations are the same as those that would be
produced if a wave (u) propagated freely in a uniform medium with moduli L and density p.
The corresponding mathematical conclusion

(4.12)

which, together with (4.3) and (4.7) defines T" 7T" can indeed be obtained directly from eqns
(4.2) to (4.5), using the detailed forms of the Fourier transforms 5., M., 5" MI which are
associated with a, defined by (3.9).

A solution to higher order in w requires study of the full eqns (3.1), (3.2), which are now
given in the expanded forms

Pr(Lr- LoflTr +±fdx'r"'(x')(P., - p.Pr)e-ib.x'T•
• -1

=Pr(e)- ±fdX'(Sx -1j(P.,- P.Pr)e-Wu'T•
• -1

-±fdx'Mx(P.r - p.Pr ) eib.x'7T., (4.13).-1
Pr(Pr - Pof l 7Tr = - iwPr(u) + iw ±fdx'S(P.r- p.p,) e-ikn.x'T•

• -1

+ iw ±fdx'M(Psr - PsPr) e-ikn.x'7T" (4.14).-1
in which x = 0 and (u), (e) remain defined by (4.4), (4.5). Lowest-order estimates for the
dispersion and attenuation of waves in the composite are obtained by extracting from eqns
(4.13), (4.14), the real and imaginary perturbations of lowest order to the system (4.2), (4.3).
Considering first the right side of (4.13),
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from (2.10) and (3.11). Lowest-order perturbations are therefore obtained by neglecting
exponential factors and evaluating the integrals

A~,(~) =I dx'8(~.x')(Ps, - p.p,),

As, = Idx'(Ps, - PsP,).

(4.16)

(4.17)

These will exist if the composite has no long-range order; this will be assumed from this point
onwards. Both of the integrals have simple physical interpretations: As, represents P, times the
difference between the expected volume of phase s in any large volume, subject to the
restriction that phase r is at the origin, and the corresponding unrestricted expected volume,
while A~, has a similar interpretation, in terms of areas on the plane ~.x' = O.

Next, from (2.11) and (3.11),

(4.18)

This is an odd function; correspondingly, its lowest-order contribution to (4.13) is obtained by
expanding e-ikn

.
x

• to first order in k. The complicated term involving sgn(s-x) makes a con
tribution of order w4 which is already smaller than those obtained from (4.15). This is neglected,
therefore, and only the integral

fdx'8'(~.x')(Ps, - PsP,)(n.x') = (n.V{)A~,(~) (4.19)

is needed.
The terms on the right side of (4.14) may be treated similarly. The operator M( = - iwG) is even

and so generates perturbations involving A~r(~), ASh while S is odd and involves the integral
(4.19).

There remains the term involving roc on the left side of (4.13). To the order now required, it
is necessary to expand the exponential e -ik(n.x·) to order k2

; the term of order k contributes
nothing, since roo is even. The extra integral that it needed is

The perturbed equations may now be summarised as follows.

"P,(L, - LorlT, + L ArsTs = P,(e} + €"
.. =1

where the perturbations €" v, are given by

"- ~ [(k 2A(kkl 2A(wwl' 3D ) kB]€,-- £.J ,s +w rs +tw rs T.. +W r..7T.,
.. =1

n

v, = L [wkB~,T, + (w 2Crs + iw 3Ers )7Tsl
,=1

and the constants in eqns (4.23), (4.24) are as listed.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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(4.25)

(4.26)

(4.27)

(4.28)

1 3 J(C",)pj=W~1
I~I=I

(4.29)

(D ) 1 ~3 JdS {gutUr{l A I... pqij=P6 PoC 5 ., .. '
11 -I N (pq)(Ij)

I~I=I

(4.30)

1 3 J
(E..)pi = 16112 ~1

I~I=I

dS uturA
3 ,r-

POCN
(4.31)

The eigenvalues of the system (4.21), (4.22) may now be sought by treating the system as a
perturbation of (4.2), (4.3). First, by inverting the terms on the left sides of (4.21), (4.22),

ft

'T. = ~ T••(p.(e) +E.),
.=1

11, =(p, - Po)(- iw(u) +v.lP.),

(4.32)

(4.33)

in which the inverse operator T.. has the symmetry T.. = T." from the symmetry of A.. and, for
consistency with (4.7),

It follows, therefore, that

ft

S. = ~ T.sPs.
s=1

ft

T=(L - Lo)(e) +~ S.Es,
s=1

ft

iT = iw(p - po)(u) - iw L (Ps - Po)v..
s=1

(4.34)

(4.35)

(4.36)

having used the symmetry of T... with (4.34) and (4.9), to derive (4.35). In addition, eqn (4.4)
must hold exactly: upon writing this in the explicit form

and substituting for T, iT from (4.35), (4.36), the equation

ft

([k 2L(n)- i>w 2I](U)}i = L [- k(SsEs)ijn; + iw(ps - Po)(Vs)i]
s=1

(4.37)

(4.38)
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is obtained. If the right side of (4.38) is disregarded, the long-wavelength approximation (4.12) is
recovered. Let (U)N, kN represent an eigenvector and correspondina eigenvalue of (4.12). Then
the perturbed eigenvalue, k = kN +8kN say, of (4.38) can be obtained by forming the inner
product of (4.38) with (U)N, to give

n

k2
_ kN

2 =L [(e)NS.E. + iW(U)N(P. - Po)v.J/(u)NL(nXu)..-\ (4.39)

The required lowest-order approximation to k2
- kN

2 now follows by replacing the still-unknown
k, (u), 7'., 11'. by their unperturbed values kN, (U)N, together with the associated 7'., 11'" on the
right side of (4.39). Thus, finally, using (4.7) and (4.3) to express the right side just in terms of 7'"

11'.,

where

and

1 n n

Q'= 2 -: ~ L [7',(k2A~)+w2A~:""»7'.
k (u)L(nXu) ,-1 ,_I

+ 2wk7',B,,11', + W
211',C,,11',)

(4.40)

(4.41)

(4.42)

In (4.41), (4.42) the suffix N has been suppressed for notational convenience: it is to be
understood that k, (u) take the values kN, (U)N and that 7'" 11', are the associated polarizations,
related to them by (4.3) and (4.7). Both 7', and 11'. are of order w(u). Correspondingly, Q' and Q
are of order w2

, w3 respectively. Since the wave is characterized by the factor exp[
i(kn.x +wt»), positive Q corresponds to attenuation in the direction of propagation while
positive Q' corresponds to a reduction (of order w1 in the phase velocity, Re(wlk).

5. DISCUSSION

The preceding sections have summarised a set of equations (namely, (2.24) and (2.25» that
provide an approximate description for waves in a composite, making "optimal" use of
two-point correlations, their optimal status being judged relative to the stationary principle
(2.21). Possible plane-wave solutions have been discussed and dispersion relations have been
given explicitly, through equations (4.12) and (4.40), for long waves. No assumptions have been
made concerning the elastic symmetry of the phases, symmetries of the correlations or the type
of composite: the formulae embrace equally well cases such as a matrix containing a dis
tribution of discrete inclusions and a polycrystalline aggregate. Examples will be given in the
paper that follows (Paper II). The present article will be concluded with a number of general
remarks.

It may be noted first that the formulation employs a general comparison material, with
moduli Lo and density Po. Once these are chosen, the formulation is "optimal", but different
choices of Lo, Po of course yield different "optimal" estimates for 7'" 11'. and the dispersion
relation k(w). In the long-wavelength limit, the formulation generates the Hashin-Shtrikman
estimates i for the overall moduli and the true overall moduli, i say, are bounded in the sense
that i - i is positive- or negative-definite whenever L. - Lois correspondingly definite for each
r. This result was generalized in[I), where it was shown that the stationary principle (2.12) in
fact provides a minimum principle for the Laplace transform of 'J{ when the transform variable
is real and positive, so long as Lo, Po are chosen so that L. - Lo is negative-definite and p. - po is
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negative for each r, and a maximum principle if L, - Lo is positive-definite and p, - po is
positive for each r.

Just as the Hashin-Shtrikman upper- and lower-bound estimates for i are not always close
together, it is to be expected that the dispersion relation k(w) predicted from the present
equations is sensitive to the choice of Lo, po and the problem of selecting the best Lo, Po
presents itself. In the static limit, Willis (l5] showed that the self-consistent estimates of
Hershey[t7], Budiansky[18], HiII[19] and others were generated by stipulating that Lo should
be chosen so that the mean polarization f was zero which, in turn, implies that i = Lo. This
prescription is not, of course, exact, because the assumed piecewise-constant form for T (to
which (2.22) reduces) is not likely to provide the exact solution; it is just the best that can be
done if only two-point correlations are known. In Paper II which follows, estimates for i and
for the perturbations Q, Q' in (4.40) are calculated for particular composites, with Lo, Po chosen
both to provide Hashin-Shtrikman upper- and lower-bound estimates, and chosen "self
consistently", so that Ln =i, Po =p.

A more general self-consistent scheme for dynamic problems has recently been proposed by
Devaney[lO]. He employed methods developed in quantum mechanics by Gyorfly[20] and
Korringa and MiIls[2l] and used quantum-mechanical formalism. In essence, however, the idea
was to employ a comparison material characterised by non-local operators Ln, po (whose
Fourier transforms are functions of k and w) and to choose Lo, Po so that a certain transition
operator had mean value zero. The transition operator was to be estimated by employing the
quasicrystalline approximation of Lax [4]. In present notation, the transition operator applied to
Uo generates the source term div T - ir; the procedure is thus equivalent to applying the
quasi-crystalline approximation to T, 7T and then choosing Lo, Po so that (T) = (71') = O. Equations
corresponding to (2.24), (2.25) were developed in [8] for a nonlocal, viscoelastic comparison
material, with this possibility in mind and, although this was not mentioned in[l], the reasoning
that leads to the stationary principle (2.21) applies unaltered if Lo and Po are such operators, so
long as they satisfy certain plausible symmetry conditions. With this slight restriction, eqns
(2.24), (2.25) could be used as a starting point for Devaney's scheme, with the advantage that
they have an "optimal" status, independent of the quasicrystalline assumption. Devaney
actually considered only the case of a matrix containing inclusions, distributed so that the
composite overall was isotropic. To this extent, eqns (2.24), (2.25) provide a generalization. It
should, perhaps, be mentioned that Devaney's scheme was implemented in [to] only in the Born
approximation, which applies to weak scatterers. The results contained in Section 4 are the only
ones known to us that are applicable to composites with any phase geometry, with the single
restriction that there should be no long-range order.
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